
Dynamical density functional theory: phase separation in a cavity and the influence of

symmetry

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys.: Condens. Matter 17 S3253

(http://iopscience.iop.org/0953-8984/17/45/009)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 06:40

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/17/45
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 17 (2005) S3253–S3258 doi:10.1088/0953-8984/17/45/009

Dynamical density functional theory: phase
separation in a cavity and the influence of symmetry

A J Archer

H H Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK

Received 16 September 2005
Published 28 October 2005
Online at stacks.iop.org/JPhysCM/17/S3253

Abstract
Consider a fluid composed of two species of particles, where the interparticle
pair potentials u11 = u22 �= u12. On confining an equal number of particles from
each species in a cavity, one finds that the average one body density profiles of
each species are constrained to be exactly the same due to the symmetry, when
both external cavity potentials are the same. For a binary fluid of Brownian
particles interacting via repulsive Gaussian pair potentials that exhibits phase
separation, we study the dynamics of the fluid one body density profiles on
breaking the symmetry of the external potentials, using the dynamical density
functional theory of Marconi and Tarazona (1999 J. Chem. Phys. 110 8032).
On breaking the symmetry we see that the fluid one body density profiles can
then show the phase separation that is present.

In equilibrium density functional theory (DFT) [1], the key quantity is the Helmholtz free
energy functional. Given this functional, one can calculate the (ensemble) average one body
density profile(s) for a fluid of particles subject to any given external potential. The form of the
Helmholtz free energy functional depends, of course, upon the particular interaction potentials
between the particles in the fluid. However, this functional is in general unknown, except
in a few cases for one-dimensional fluids [1]. Nonetheless, in the last 30 years, a number
of rather accurate approximate Helmholtz free energy functionals have been developed for a
wide class of fluids—see [1] and references therein. When attempting to construct a theory for
the dynamics of the (ensemble) average density profile of a fluid confined in a time-dependent
external potential, it is very appealing, given this large body of work, to base a theory for the
dynamics upon the equilibrium Helmholtz free energy functional. In other words, if one is
wanting to study the dynamics of a fluid, is it possible to just apply the relevant equilibrium
Helmholtz free energy functional in the dynamical theory?

Recently, Marconi and Tarazona derived a dynamical density functional theory
(DDFT) [2, 3] for fluids of Brownian particles. Their theory is based upon the equilibrium
fluid Helmholtz free energy functional in a rather simple way and therefore has attracted much
interest. The theory is not exact; it involves approximating the two body correlations in the non-
equilibrium fluid by those of an equilibrium fluid with the same one body density profile [2–4].
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However, for all the cases where comparison with Brownian dynamics (BD) simulations has
been made, the theory has proved to be remarkably accurate [2, 5–8]. It appears that as long
as one has an accurate approximation for the equilibrium Helmholtz free energy functional,
then the DDFT gives a good account of the dynamics for Brownian fluids.

The present paper builds upon an earlier study [7], in which we considered two different
asymmetric binary mixtures of particles interacting via repulsive Gaussian pair potentials [9]:
ui j(r) = εi j exp(−r2/R2

i j), where i, j = 1, 2 label the two different species of particles,
εi j > 0 is a parameter that determines the strength and Ri j denotes the range of the interaction
potential. For different choices of these parameters one can obtain either a mixture exhibiting
bulk fluid–fluid (macro)phase separation [10, 11, 7], or alternatively, a mixture exhibiting
microphase separation [12, 7]. We found that the DDFT used in conjunction with an extremely
simple approximate (RPA) Helmholtz free energy functional was able to account accurately
for the dynamics of phase separation induced by reducing the radius of the confining spherical
cavity potential [7]. In the present paper we consider similar situations but for symmetric
binary Gaussian core model (GCM) fluids, i.e. where R11 = R22 and ε11 = ε22, but where
R12 �= R11 or ε12 �= ε11. The presence of this symmetry can have a dramatic effect on the
confined fluid one body density profiles in cases where there are equal numbers of particles
for each species. As long as the confining cavity potentials are the same for both species of
particles, then the ensemble (or time) average one body density profiles of the two species
must be exactly the same. Symmetry dictates this must always be the case, even when the fluid
exhibits phase separation. Here we show that when one breaks the symmetry of the confining
cavity potential, such that the cavity walls favour one of the species, then the fluid one body
density profiles can change significantly and show the influence of the phase separation; see
for example the results in figures 1–4.

We now describe further the model fluid and the DDFT: the GCM fluid pair potentials
have no hard core and the centres of the particles can overlap completely. Such potentials arise
when one considers the effective potential between the centres of mass of polymers in a good
solvent; see [9] and references therein. In this case εi j ∼ 2kBT and Ri j ∼ Rg, the polymer
radius of gyration. We consider two symmetric binary mixtures of GCM particles. In both
cases ε11 = ε22 = ε12 = 2kBT and R11 = R22. The first mixture, which we denote fluid
A, is that with R12 = 0.6R11. Fluid A exhibits microphase separation, and is similar to the
fluid described in [12]. This mixture exhibits 1–2 ordering, i.e. where a particle of one species
preferentially has particles of the opposite species as nearest neighbours [12]. The second
mixture, which we denote fluid B, is that with R12 = 1.1R11. Fluid B exhibits macrophase or
bulk phase separation. This is driven by the fact that R12 > R11 = R22 [11]. The bulk critical
point for this mixture is at a total density ρR3

11 = 0.54 and, by symmetry, at concentration
x1 = x2 = 0.5.

When the GCM fluid density becomes sufficiently high, the following mean-field
Helmholtz free energy functional is rather accurate [9–11]:

F[{ρi(r)}] = Fid[{ρi(r)}]+ 1
2

∑

i, j

∫
dr

∫
dr′ ρi (r)ρ j(r′)ui j(|r−r′|)+

∑

i

∫
dr Vi(r)ρi(r), (1)

where {ρi(r)} are the fluid one body density profiles, Vi(r) is the external potential for particles
of species i and Fid is the ideal gas contribution to the free energy [1].

For a fluid of N = N1 + N2 Brownian (colloidal) particles, one can approximate
the equations of motion using the following stochastic Langevin equations of motion:
�−1

i drn(t)/dt = −∇nU(rN , t) + Gn(t), where rn is the position of the nth particle, �−1
i

is a friction constant for particles of species i (we assume �1 = �2 = �), U(rN , t) is the
potential energy and Gn(t) is a stochastic white noise term; see [2, 4, 7] for more details.
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Figure 1. Fluid A density profiles ρi (r, t) (solid line: DDFT results for species 1, dashed line:
species 2; symbols are BD results, (+) for species 1, (×) for species 2) for N1 = N2 = 100
particles, which is initially (t < 0) at equilibrium confined in (asymmetric) external potentials with
E1 = 10kBT , E2 = 20kBT and R = 3R11. At t = 0, E2 is suddenly reduced to E2 = 10kBT ,
giving symmetrical confinement. The profiles are plotted for various t∗ = kBT �R2

11t . This model
fluid exhibits microphase separation: the initial configuration has an ‘onion’ structure, but on
enforcing the symmetry in the external potentials, any signature of this structure in the one body
density profiles disappears as time progresses.

From such equations of motion, averaging over all realizations of the stochastic noise, one
can obtain the following equations for the time evolution of the ensemble average one body
density profile [2–4, 7]:

∂ρi (r, t)

∂ t
= �i∇

[
ρi (r, t)∇

(
δF[{ρi(r, t)}]

δρi(r, t)

)]
, (2)

where the Helmholtz free energy functional F[{ρi (r, t)}] is given by the equilibrium functional
with the equilibrium density profiles {ρi(r)} replaced by the set of non-equilibrium profiles
{ρi (r, t)}. We solve the DDFT (2) for the binary GCM confined in spherically symmetric
external potentials of the form [5, 7] Vi (r) = Ei(r/R)10, where r is the distance from the
origin, Ei is an energy scale and the length-scale R (cavity radius) is the same for both species
of particles.

In figure 1 we display the results for N1 = N2 = 100 particles of each species of a
mixture of fluid A. Initially (t < 0) the external potential parameters E2 �= E1 and the fluid
one body density profiles exhibit 1–2 ordering (microphase separation) in the cavity. Then
at t = 0 the external potentials are made symmetric: E1 = E2. At equilibrium, for such
symmetric external potentials, the one body density profiles for each species must be the same
since N1 = N2. We see in figure 1 that the density profiles quickly evolve to give the same
final profiles for each species. We also display the results from BD simulations, which show
extremely good agreement with the results from the DDFT, giving confidence in the DDFT
approximation. In figure 2 we display DDFT results for a much larger number of particles.
The external potentials for t < 0 are symmetric and therefore the ensemble average density
profiles at t = 0 are the same for both species. At t = 0 the symmetry in the external potentials
is broken, such that particles of species 1 are favoured by the walls of the cavity. The one body
density profiles then evolve towards equilibrium density profiles that display the microphase
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Figure 2. Fluid A density profiles ρi (r, t) (solid line: species 1, dashed line: species 2) for
N1 = N2 = 6000 particles. Initially (t < 0) the fluid is at equilibrium confined in symmetric
external potentials with E2 = E1 = 10kBT and R = 8R11. At t = 0, E2 is suddenly increased
to E2 = 20kBT , breaking the symmetry. The profiles are plotted for various t∗ = kBT �R2

11t .
Initially there was no signature of microphase separation in the density profiles, but after breaking
the symmetry, the fluid profiles develop an ‘onion’ structure.
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Figure 3. As in figure 1, but for fluid B with N1 = N2 = 100. The initial density profiles are those
for symmetric external potentials: E1 = E2 = 10kBT . At t = 0, E2 → 20kBT . The subsequent
profiles then show the signature of phase separation.

ordering in the fluid [12]. Note that this does not mean that there was no microphase separation
for t < 0 (the average total density and composition has not changed); if one were to look at
a ‘snapshot’ of the particle configurations at a time t < 0 one would indeed see microphase
ordering. We illustrate this below for fluid B.

In figure 3 we display the results for N1 = N2 = 100 particles for fluid B. Initially (t < 0)
the external potential parameters E2 = E1 and the fluid one body density profiles are the same
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Figure 4. As in figure 2, but now for fluid B with N1 = N2 = 1000 particles. Initially there
is no signature of phase separation in the density profiles, but after breaking the symmetry in the
external potentials, there is. Note that the intermediate profiles exhibit two fluid–fluid interfaces
(rather than one). In the final frame we display a slice (particles with −0.5R11 < z < 0.5R11)
from an equilibrium configuration t < 0. Even though the one body density profiles (t = 0) show
no signature of phase separation, this configuration does.

(This figure is in colour only in the electronic version)

for each species. At t = 0 the symmetry in the external potentials is broken: E1 �= E2, such
that the cavity walls now favour species 1. The equilibrium density profiles for the asymmetric
external potentials then show that the fluid does indeed exhibit the signature of bulk phase
separation. We also display the results from BD simulations, which show extremely good
agreement with the results from the DDFT. In figure 4 we display the DDFT results for fluid B
with a larger number of particles. Once again the external potentials for t < 0 are symmetric
and therefore the ensemble average density profiles at t = 0 are the same for both species.
At t = 0 the symmetry is broken and the one body density profiles then evolve towards ones
that show the fluid–fluid phase separation. Interestingly, this evolution to the final equilibrium
density profiles proceeds via an intermediate state where the fluid is rich in species 1 at both
the centre and close to the wall of the cavity. Then, as time proceeds, species 1 particles at
the centre of the cavity diffuse to the outside, since the intermediate state has two fluid–fluid
interfaces which has a higher free energy cost than the final equilibrium configuration with
only one fluid–fluid interface. Despite the fact that the t = 0 profiles show no sign of phase
separation, in the final frame of figure 4 we see that in a particular configuration of the particles
that there is phase separation in the cavity—i.e. the t = 0 profiles in figure 4 are the result of
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ensemble averaging over strongly asymmetric configurations. This implies that in this larger
cavity there are strong fluctuation effects over the whole cavity, which are neglected in the
present mean-field DFT treatment [14]. We therefore expect the DDFT results of figure 4 to
be less reliable than those of figure 3.

We conclude by emphasizing that although the initial (t = 0) one body density profiles
in figures 2–4 show no obvious sign of phase separation, this does not mean that there will
be no signature of phase separation in a particular equilibrium configuration of the particles
subject to symmetric external potentials. However, in the ensemble average, the one body
density profiles must be the same and therefore show no signature of phase separation. Such
effects demonstrate an important aspect of the DDFT: this is a theory for the ensemble average
fluid one body density profiles [13] and therefore, as with equilibrium DFT, the fluid density
profiles must exhibit the symmetry of the confining external potentials.
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